Navigation
  • LA SESPM
    • La institución
    • Bienvenida del presidente
    • Historia de la SESPM
    • Estatutos
    • Presidentes de la SESPM
    • Junta directiva
    • Secretaría y contacto
    • Comité editorial web
    • Boletines
    • Medalla de oro de la SESPM
    • Socios
      • Socios de honor
      • Socios corporativos
      • Cómo hacerse Socio
      • Servicios y beneficios
      • Registro
    • La SETS
      • La SETS carta de presentación
      • La SETS Junta directiva
      • La SETS Reglamentos
  • Formación
    • Formación online
    • Revista de la SESPM
      • Revista
      • Comité editorial y normas de publicación
    • Congresos SESPM
    • Cursos y congresos
    • Publicaciones
    • Consensos y protocolos
    • Bibliografía y colaboraciones
    • Enlaces de interés
    • Videoteca
  • Investigación
    • GES
    • Objetivos
    • Producción científica
    • Proyectos
      • Modelo de solicitud para presentar un proyecto
      • Protocolos Normalizados de Trabajo
      • Registro para la presentación de proyectos
      • Circuitos para valorar los proyectos
      • Criterios de evaluación de los proyectos
    • Miembros del comité científico
  • Unidades de mama
    • Unidades de mama
    • Objetivo de las unidades
    • Unidades acreditadas
    • Unidades en proceso de acreditación
    • Comisión de acreditación
    • Plataforma de acreditación
    • LYNOLOG
    • SIRUMA
    • RIOMA
  • Noticias
    • Noticias de la SESPM
    • Noticias médicas
    • Eventos
Account
Site logo
  • LA SESPM
    • La institución
    • Bienvenida del presidente
    • Historia de la SESPM
    • Estatutos
    • Presidentes de la SESPM
    • Junta directiva
    • Secretaría y contacto
    • Comité editorial web
    • Boletines
    • Medalla de oro de la SESPM
    • Socios
      • Socios de honor
      • Socios corporativos
      • Cómo hacerse Socio
      • Servicios y beneficios
      • Registro
    • La SETS
      • La SETS carta de presentación
      • La SETS Junta directiva
      • La SETS Reglamentos
  • Formación
    • Formación online
    • Revista de la SESPM
      • Revista
      • Comité editorial y normas de publicación
    • Congresos SESPM
    • Cursos y congresos
    • Publicaciones
    • Consensos y protocolos
    • Bibliografía y colaboraciones
    • Enlaces de interés
    • Videoteca
  • Investigación
    • GES
    • Objetivos
    • Producción científica
    • Proyectos
      • Modelo de solicitud para presentar un proyecto
      • Protocolos Normalizados de Trabajo
      • Registro para la presentación de proyectos
      • Circuitos para valorar los proyectos
      • Criterios de evaluación de los proyectos
    • Miembros del comité científico
  • Unidades de mama
    • Unidades de mama
    • Objetivo de las unidades
    • Unidades acreditadas
    • Unidades en proceso de acreditación
    • Comisión de acreditación
    • Plataforma de acreditación
    • LYNOLOG
    • SIRUMA
    • RIOMA
  • Noticias
    • Noticias de la SESPM
    • Noticias médicas
    • Eventos
MI SESPM

Registrarse
¿Has olvidado tu contraseña?
Contacto
Fundación SESPM
Site logo
  • LA SESPM
    • La institución
    • Bienvenida del presidente
    • Historia de la SESPM
    • Estatutos
    • Presidentes de la SESPM
    • Junta directiva
    • Secretaría y contacto
    • Comité editorial web
    • Boletines
    • Medalla de oro de la SESPM
    • Socios
      • Socios de honor
      • Socios corporativos
      • Cómo hacerse Socio
      • Servicios y beneficios
      • Registro
    • La SETS
      • La SETS carta de presentación
      • La SETS Junta directiva
      • La SETS Reglamentos
  • Formación
    • Formación online
    • Revista de la SESPM
      • Revista
      • Comité editorial y normas de publicación
    • Congresos SESPM
    • Cursos y congresos
    • Publicaciones
    • Consensos y protocolos
    • Bibliografía y colaboraciones
    • Enlaces de interés
    • Videoteca
  • Investigación
    • GES
    • Objetivos
    • Producción científica
    • Proyectos
      • Modelo de solicitud para presentar un proyecto
      • Protocolos Normalizados de Trabajo
      • Registro para la presentación de proyectos
      • Circuitos para valorar los proyectos
      • Criterios de evaluación de los proyectos
    • Miembros del comité científico
  • Unidades de mama
    • Unidades de mama
    • Objetivo de las unidades
    • Unidades acreditadas
    • Unidades en proceso de acreditación
    • Comisión de acreditación
    • Plataforma de acreditación
    • LYNOLOG
    • SIRUMA
    • RIOMA
  • Noticias
    • Noticias de la SESPM
    • Noticias médicas
    • Eventos
Sociedad-espanola-de-senologia-y-patologia-mamaria-cancer-de-mama
View large
Noticias, Noticias medicas español, Ultimas

La predicción del riesgo del cáncer de mama da un paso más gracias a la inteligencia artificial

Fuente: www.gacetamedica.com

Un tipo sofisticado de inteligencia artificial (IA) puede superar los modelos existentes basados en mamografías periódicas al predecir qué mujeres tienen un riesgo futuro de cáncer de mama, según un estudio publicado en la revista ‘Radiology’.

Recomiendan revisiones cada dos años a las mujeres que han tenido falsos positivos en una mamografía

La mayoría de los programas de detección de cáncer de mama existentes se basan en mamografías a intervalos de tiempo similares, generalmente, anualmente o cada dos años, para todas las mujeres. Este enfoque de ‘talla única’ no está optimizado para la detección del cáncer a nivel individual y puede dificultar la efectividad de los programas de detección.

“La predicción del riesgo es un componente importante de una política de detección adaptada individualmente -señala la autora principal del estudio, Karin Dembrower, radióloga de mama y doctorada candidata del Instituto Karolinska en Estocolmo (Suecia)-. La predicción efectiva del riesgo puede mejorar la asistencia y la confianza en los programas de detección”. La alta densidad mamaria, o una mayor cantidad de tejido glandular y conectivo en comparación con la grasa, se considera un factor de riesgo de cáncer.

Si bien la densidad puede incorporarse en la evaluación de riesgos, los modelos de predicción actuales pueden no aprovechar al máximo toda la rica información que se encuentra en las mamografías. Esta información tiene el potencial de identificar a las mujeres que se beneficiarían de un examen adicional con resonancia magnética.

La doctora Dembrower y sus colegas desarrollaron un modelo de riesgo que se basa en una red neuronal profunda, un tipo de IA que puede extraer grandes cantidades de información de las imágenes mamográficas. Tiene ventajas inherentes sobre otros métodos, como la evaluación visual de la densidad mamográfica por parte del radiólogo, que puede no ser capaz de capturar toda la información relevante para el riesgo en la imagen.

Un nuevo modelo más preciso

El nuevo modelo fue desarrollado y entrenado en mamografías de casos diagnosticados entre 2008 y 2012 y luego se estudió en más de 2.000 mujeres de 40 a 74 años que se habían sometido a una mamografía en el sistema del Hospital Universitario Karolinska. De las 2.283 mujeres en el estudio, 278 fueron diagnosticadas más tarde con cáncer de mama.

La red neuronal profunda mostró una asociación de mayor riesgo de cáncer en comparación con el mejor modelo de densidad mamográfica. La tasa de falsos negativos, la tasa a la que las mujeres que no fueron clasificadas como de alto riesgo fueron luego diagnosticadas con cáncer de mama, fue menor para la red neuronal profunda que para el mejor modelo de densidad mamográfica.

“La red neuronal profunda en general fue mejor que los modelos basados en la densidad -asegura la doctora Dembrower-. Y no tenía el mismo sesgo que el modelo basado en la densidad. Su precisión predictiva no se vio afectada negativamente por los subtipos de cáncer más agresivos”.
Los hallazgos del estudio respaldan un papel futuro para la IA en la evaluación del riesgo de cáncer de mama. “Actualmente no estamos informando la densidad mamográfica -apunta Dembrower-. En la introducción del cribado adaptado individualmente utilizamos redes de aprendizaje profundo capacitadas para predecir el cáncer en lugar de tomar la ruta indirecta que ofrece la densidad”. Como beneficio adicional, el enfoque de IA puede mejorarse continuamente con la exposición a más conjuntos de datos de alta calidad.

“Nuestros expertos en aprendizaje profundo en el Royal Institute of Technology en Estocolmo están trabajando en una actualización del modelo -avanza la doctora-. Después de eso, nuestro objetivo es probar el modelo clínicamente el próximo año ofreciendo resonancia magnética a las mujeres que más se beneficiarán”.

Previous
Sociedad-espanola-de-senologia-y-patologia-mamaria-cancer-de-mama El Clínico San Carlos crea un circuito integrado para pacientes con cáncer de mama
Next
El cáncer de mama y su plasticidad Sociedad-espanola-de-senologia-y-patologia-mamaria-cancer-de-mama

Related posts

More details
Noticias, Noticias medicas español, Ultimas

Dra. Ana Lluch: “Estamos viendo tumores de mama inflamatorios que ya no veíamos en nuestro país”

27 febrero, 2021 at 11:23 am by Administrador SESPM
...
More details
Noticias, Noticias medicas español, Ultimas

Investigadores de la UCLM identifican un nuevo biomarcador basado en imagen metabólica que mejora el pronóstico del cáncer de mama y pulmón

27 febrero, 2021 at 11:19 am by Administrador SESPM
...
More details
Noticias, Noticias medicas español, Ultimas

Una organización solidaria financia un proyecto de investigación sobre el cáncer de mama en mujeres premenopáusicas

27 febrero, 2021 at 11:04 am by Administrador SESPM
...
More details
Noticias, Noticias medicas español, Ultimas

El Hospital Reina Sofía mejora la detección de lesiones tumorales al incorporar la mamografía con contraste

27 febrero, 2021 at 10:52 am by Administrador SESPM
...
More details
Noticias, Noticias medicas español, Ultimas

Estudios con datos en vida real confirman los beneficios de las nuevas terapias en cáncer de ovario y de mama

27 febrero, 2021 at 10:48 am by Administrador SESPM
...

Comments are closed

SESPM ® y © 2020. Nosotros subscribimos los Principios del código HONcode.

Aviso legal. El uso de este sitio web constituye la aceptación de la Política de Privacidad.

© Diseño web. 2020

Search engine

Use this form to find things you need on this site